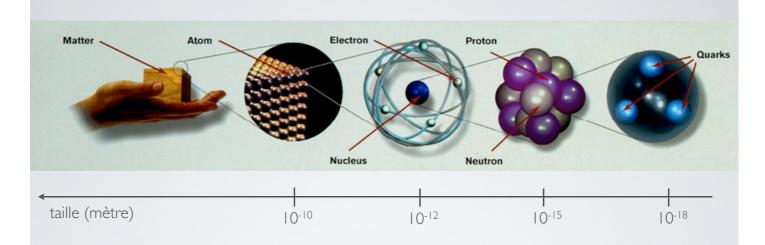
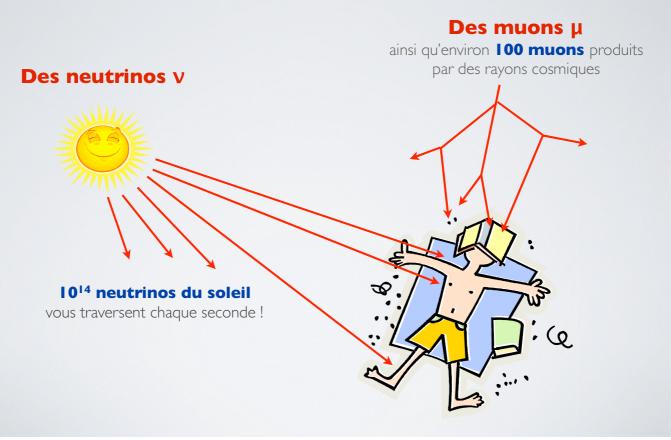
introduction à la physique des particules

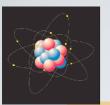


"Particles, particles, particles."

masterclasses de Strasbourg


février 2010

les particules élémentaires... c'est quoi?



- → dépend des moyens expérimentaux pour les regarder.
- → donc c'est une notion qui varie avec l'époque.
- → créer des nouvelles particules en faisant des **collisions** de particules : **E = mc²**
- \rightarrow objets non composites à l'échelle de 10^{-18} m. Masses de l'ordre de 10^{-30} kg.
- → les électrons et quarks sont des particules élémentaires.

des particules élémentaires vous traversent!

les particules de matière

les particules élémentaires se désintègrent en des particules élémentaires plus légères

la matière ordinaire

matière plus lourde produite dans des collisions à haute énergie

S	
~	
5	

+2/3

UP (1968)

charm (1974)

top (1995)

-1/3

down (1968)

strange (1968)

beauty (1977)

leptons

()

Ve neutrino "e" (1956)

neutrino "µ" (1962)

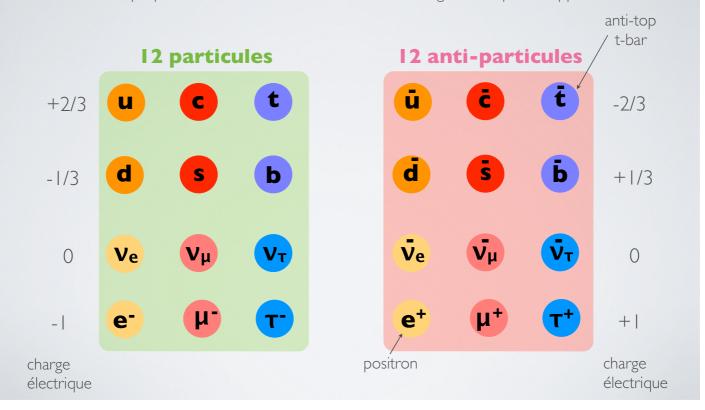
neutrino "T" (2000)

e électron (1897)

muon (1936)

tau (1974)

charge électrique

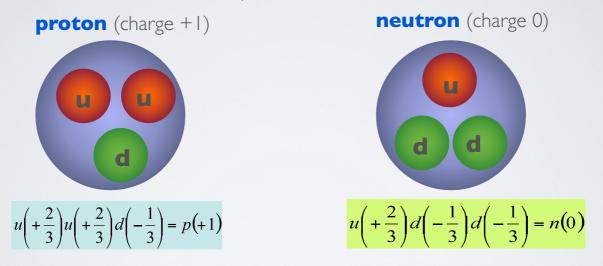

lère famille

2ème famille

3ème famille

et aussi les anti-particules

Pour chaque type de particule élémentaire il existe une particule qui possède les mêmes propriétés et la même masse mais dont la charge électrique est opposée.



les quarks forment des hadrons

Les quarks ne se promènent jamais seuls.

Ils sont confinés dans des particules, qui ont une charge électrique entière, appelées des **hadrons**.

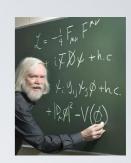
Deux exemples bien connus :

Ce qui colle les quarks ensemble : une **interaction** (une force).

les interactions

Toutes les forces observées dans la nature sont dues à 4 interactions fondamentales.

Ces interactions résultent de l'échange de particules d'interaction.

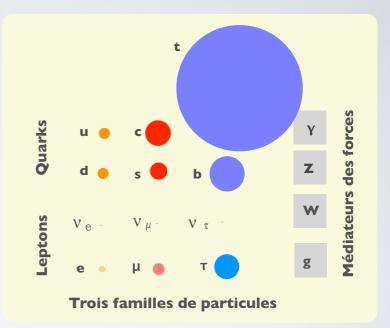

				_	ite au
interaction	électroma- gnétique	forte	faible	gravita on tionnelle	décrito veau des particules
particule médiatrice	photon (1905)	8 gluons (1979)	3 bosons (1983) W+ W- Z	graviton ?	pothétique
amplitude relative (au niveau des particules)	10-2	I	10-14	10-40	

l'expérience et la théorie

Différents processus décrits par une loi commune : une **théorie**.

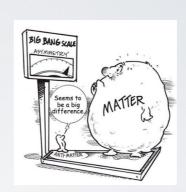
→ explication et prédiction.

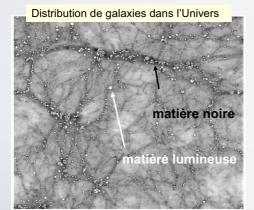
Il faut **tester** les théories par l'**expérience**. On peut démontrer qu'une théorie est fausse, c'est beaucoup plus difficile de montrer qu'elle est vraie!


Théorie actuelle de la physique des particules : le **modèle standard**. Elle est basée sur :

- → la mécanique quantique (infiniment petit)
- → la relativité restreinte (vitesses ~ c, hautes énergies)

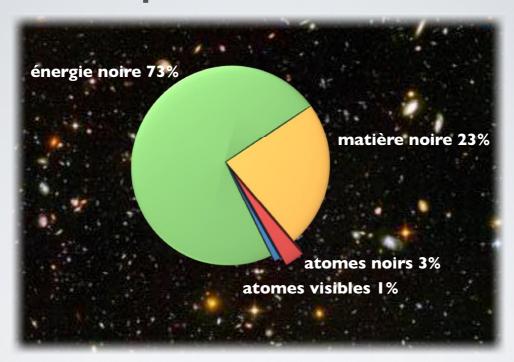
les limites de la théorie : des questions ouvertes

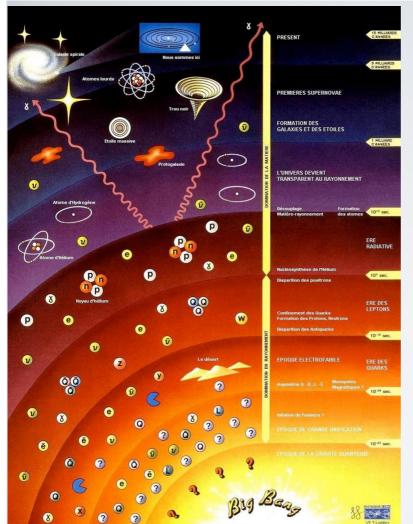

- pourquoi **3 familles** de constituants élémentaires ?
- pourquoi existe-t-il une grande disparité de masse entre les particules ?
- quelle est l'origine de la masse ? Le boson de Higgs existe-t-il ?



- comment peut-on inclure la gravitation dans le modèle ?
- comment peut-on unifier (décrire par une même loi) toutes les forces ?

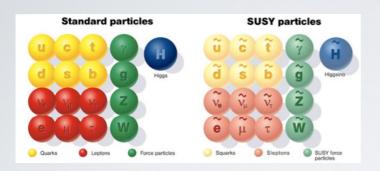
les limites de la théorie : des indices expérimentaux venus de l'Univers


L'anti-matière a quasiment disparu de notre Univers actuel...


La cinématique des galaxies ainsi que les caractéristiques de leur distribution filamentaire indiquent l'existence d'une matière supplémentaire, non lumineuse : la matière noire.

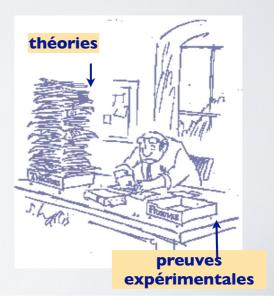
bilan: que connaissons-nous?

Energie noire + matière noire > 96 %.


Nous ne comprenons que 4 % de l'Univers!

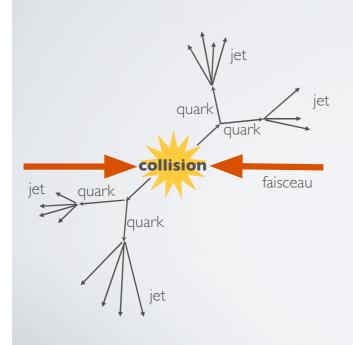
l'histoire de notre univers

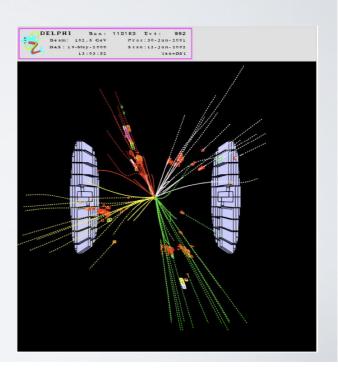
10¹³ s
premiers atomes
I s
10⁻⁶ s
10⁻¹⁰ s quarks
leptons
10⁻³⁴ s ??
10⁻⁴⁴ s gravitation
quantique


la recherche en physique des particules aujourd'hui

Des nouvelles particules ? Le boson de Higgs ?

Le **LHC** va peut-être mettre en évidence des nouvelles particules !


Et peut-être valider de nouvelles théories...



backup

des quarks aux jets

Quand une particule se désintègre en deux quarks, ces quarks ne peuvent pas rester seuls. Il y a formation d'une multitude de hadrons dans la même direction que le quark de départ. On appelle ça **un jet de particule**.

